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Equilibrium layers and wall turbulence

By A. A. TOWNSEND

Emmanuel College, Cambridge
(Received § December 1960)

In turbulent flow past rigid boundaries, there can be distinguished regions close
to the wall in which the local rates of energy production and dissipation are so
large that aspects of the turbulent motion concerned with these processes are
determined almost solely by the distribution of shear stress within the region
and are independent of conditions outside it. These regions are here called
equilibrium layers because of the equilibrium existing between local rates of
energy production and dissipation. Three kinds of equilibrium layer have been
studied experimentally, the constant-stress layer, the transpiration layer and
the zero-stress layer, but there are other possible forms. One that is of importance
in the theory of self-preserving flow in boundary layers and in diffusers is the
‘linear-stress’ layer in which the stress increases linearly with distance from the
wall. The properties of these various equilibrium layers are considered and the
distributions of mean velocity are derived from the equation for the turbulent
kinetic energy and certain assumptions of flow similarity.

The theory of self-preserving wall flow, usually expressed as a combination
of the law of the wall and the defect law, assumes compatibility between the
outer flow and the equilibrium layer, and the course of development depends on
the kind of equilibrium layer. Earlier work by the author, which assumed the
defect law, is only valid if the whole of the equilibrium layer is a constant-stress
layer and this is not true in strong adverse pressure gradients. A consistent theory
is developed for these flows by assuming a ‘linear-stress’ layer, and the solutions
show the relation between flows of finite stress and of zero stress and provide a
plausible explanation of the phenomenon of downstream instability observed
by Clauser. Self-preserving flow in wedges is treated on similar lines.

1. Introduction

So much has been written about the defects of the mixing-length theories of
turbulent flow that it can be forgotten that the momentum-transfer form of
this theory provides a simple and accurate description of the mean flow near a
rigid boundary, but the usefulness of this limited success depends on estab-
lishing the conditions for its validity. The more fundamental objections to the
general validity of the mixing-length approximation concern not so much the
crudity of the assumed mixing process as the dependence of mixing length and
eddy transport on local conditions in the flow, and they are supported by
observations that the turbulent kinetic energy at a point may depend as much
on transport processes from remote parts of the flow as on local production and
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98 A. A. Townsend

dissipation. These objections that a turbulent flow is an integrated whole and
not an assembly of quasi-independent flows do not apply to important aspects
of the flow near a rigid boundary where the balance of turbulent kinetic energy
is virtually unaffected by the nature of the flow in adjacent regions. Layers in
which these conditions are satisfied to an acceptable approximation will be called
equilibrium layers and it will be assumed that they possess an essential univer-
sality of structure which shows itself as a simple dependence of mean velocity
gradient on Reymolds stress and distance from the boundary, i.e. apparent
validity of the momentum-transfer theory. The best-known example is the
constant-stress layer whose structure has been studied in great detail by Laufer
(1955), Klebanoff (1956) and many others; other forms are the ‘zero-stress’
layer (Stratford 1959a,b) and the equilibrium layers on porous walls with trans-
piration (e.g. Dorrance & Dore 1954; Black & Sarnecki 1958), but this does not
exhaust the possibilities. The purpose of this paper is to set out the necessary
conditions for the existence of an equilibrium layer and to derive a slightly more
general relation between velocity gradient and shear stress than the mixing-
length relation. With this, a unified description of the layers is possible and this
description is applied to correct and extend the theory of the development of
self-preserving boundary layers in adverse pressure gradients (Townsend
1956a,b). A similar theory may be developed for self-preserving flow in conical
or wedge-shaped diffusers.

2. Notation

Two-dimensional mean flows are described in termas of rectangular co-ordinates
with the direction of mean flow in the 2Oy plane and with the Ox axis either
parallel to the wall (in a boundary layer) or in the plane of symmetry (in wedge
flow). Axisymmetric mean flow is described in polar co-ordinates with Oz the
axis of symmetry. Then

U,V,0 are the components of the mean velocity,
u,v,w are the components of the velocity fluctuation,
q® = ut+ 0%+ ud,
is the fluctuation from the mean pressure P,
is the kinematic viscosity,
is the local rate of destruction of turbulent energy by viscous forces,
is the local Reynolds stress,
is the K4rméan constant,
is a diffusion constant, and
° is a constant characteristic of zero-stress layers.

by o TS

Kinematic stresses and pressures are used, i.e. the mechanical quantities divided
by the fluid density. Values at the rigid boundary are distinguished by the
suffix 0 and in the free stream or on the axis of symmetry by the suffix 1.
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3. Energy equilibrium in wall turbulence
In the momentum-transfer form of the mixing-length theory, velocity gradient
and Reynolds stress are related by

=l (3.1)

where ! is a length whose magnitude must be inferred by dimensional or other
-considerations, and it is fairly well known that an equivalent relation may be
derived from the equation for the kinetic energy of the velocity fluctuations
assuming local energy and structural equilibrium (Rotta 1953). The equation
is, to the usual boundary-layer approximation,
2 2
U%+ Vi%yq—)+u—v%—[yj+a%(§qzv+ﬁ)+e'=0 (3.2)
and ¢’ = —v[uV2u + vV2 + wV2w)] is almost identical with the local rate of con-
version of turbulent energy to heat, ¢, in the fully turbulent part of the flow.
The first two terms represent the net effect of advection of turbulent energy by
the mean flow, and the first requirement for an equilibrium layer is that they
should be negligible compared with the rate of generation of turbulent energy,
—uv(oU [0y). The fourth term is the net rate of energy loss by turbulent diffusive
movements and by working against turbulent pressure gradients. If this term
is also negligible (the magnitude of this term and its effect on the energy balance
is discussed below), the energy equation becomes

—uv%—g =g, (3.3)
indicating local equilibrium between the production and dissipation of turbulent
energy.

Dissipation of energy in turbulent flow depends on working against viscous
forces caused by intense velocity gradients of very small scale, and these gradients
are maintained by a continuous process of stretching vortex-lines by diffusive
movements. Much theoretical and experimental work shows that the rate is
independent of the viscosity of the fluid and is determined by the components
of the motion that contribute most to the turbulent energy and to the Reynolds
stress (Batchelor 1953). Another characteristic of turbulent flow is that pro-
longed unidirectional shear leads to the attainment of a condition of structural
similarity in which velocity fluctuations at different points in the flow are
statistically similar.* If this is true, the local motion is specified by a scale of
velocity and a scale of length, and it follows from dimensional considerations that

€= (L (3.4)
and that | - uw| = a,g%, (3.5)

¢ The experimental evidence for structural similarity is derived mostly from measure-
ments of free turbulence or of pipe and channel turbulence outside the equilibrium layers
(Townsend 1956a, pp. 77, 1562, 179, 204, 212, 263), and direct evidence for its existence
in equilibrium layers is very incomplete. Some of the difficulties are mentioned in §8.
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using (q?)t as the scale of velocity and L, as the scale of length. Combining
equations (3.3) to (3.5), we get

o = Ly (T, (5.4)

which is equivalent to the mixing-length result if [ = af L_.

The relation (3.6) between gradient of mean velocity and Reynolds stress
becomes useful if the dissipation length L, can be inferred as a function of position
in the flow, and it is usual to assume that

l=dlL = Ky, (3.7)

where K ~ 0-41 is the Karméan constant. Dimensional reasoning confirms this
assumption if (i) the scale of the motion is unaffected by the width of the whole
flow, and if (ii) the scale of motion is unaffected by length scales characteristio
of the stress distribution in the equilibrium layer. The first of these conditions
may be satisfied by requiring that the equilibrium layer occupies only a small
fraction of the total width of the flow (a second condition for an equilibrium
layer), but the second can only be a working hypothesis justified by results. In
physical terms, this condition could be satisfied if the Reynolds stress at any point
were caused mostly by contributions from eddies whose scales are comparable
with distance of the point from the wall since they all extend to the wall and are,
in a sense, attached to it. Further, the distribution of Reynolds stress must be
such that it can be produced by a possible size distribution of these eddies, and
the only layer for which this is obviously possible is one of constant stress.

So far, the effects of lateral transport of turbulent energy, represented by the
term 8(4q% + pv)/dy, have been neglected, but the hypothesis of structural
equilibrium indicates that

3q% + pv = —a,(¢*)sgn (3g*/3y), (3.9)
where q, is a constant of order one, and the sign of 0¢%/0y has been introduced
to ensure that the net energy flux is down the gradient of turbulent intensity.
Substituting in the energy equation and omitting the advection terms, we obtain

ou 1t ylor

% = (2 39
where B = $Ka,a;t. This equation should be valid in the fully turbulent part
of an equilibrium layer, i.e. in a region defined by the conditions

. 23Y) | ,234Y)| 59U
(i) U e +V %y <—uv@,
or or oU (3.10)
or 3o, U$+V5§ <'r§§
and (il) y < D, where D is the total width of the flow.

If these conditions are satisfied, no restrictions need be imposed on the magni-
tudes of the mean flow acceleration and of the longitudinal pressure gradient.*

® If B(y/7)|or/ey| > 1, equation (3.9) is meaningless and no equilibrium layer is pos-
sible. This is most unlikely to occur in unidirectional flow.
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4. Distributions of mean velocity in equilibrium layers

Within the region determined by the conditions (3.10), mean velocity dis-
tributions are obtained by substitution of the stress distribution in equation
(3.9). Near an impermeable boundary, the stress distribution may be approxi-
mated by T =To+ay, (4.1)
and then integration of the equation (3.9) with this stress distribution leads to

7§ [1 (ro+ay>*—1§] 2(1- Bsgna)
< |10 +
K[ (rg+ayt+1d K

U= (ro+ay)t + . (4.2)
The constant of integration, U, may be regarded as a slip velocity or velocity of
translation that has no effect on the motion in the fully turbulent flow and its
magnitude may be expected to depend on the nature of the surface and on 7,,
a and v. If the surface is smooth and at rest and if the layer is fully turbulent at
distances from the wall small compared with 7,/«, the velocity distribution (4.2)
must be identical with the ordinary logarithmic distribution for constant stress

_ 1, 78y
U= X [logT+A] (4.3)
for small values of ay/7,. For these small values, (4.2) may be written
1
=T0|10e %Y -
U= X [log 4"o+ 2(1 Bsgna)] +U,
d U—T% lo 413+A—2(1—Bs a)]
and so = I_{[ g gn
and ; .
3 4 L. 1-B
7o 75 (To+y) 7'0) ] 2( sgna)
= 0o (20T TT0) L 4 2(1—Bsgna)|+ . 7o+ ay)t.
K[ g(al’ (To+ oyt +73 ( g K (To+ay)
(4.4)

The condition that the layer is fully turbulent at a distance from the wall small
compared with 7o/x is met if ay < 7, at the inner edge of the turbulent flow,
ie.aty = 20v/r}, the requirement being that rh(av)1 > 20.

The best-known equilibrium layer of this class, the constant-stress layer, has
been studied in great detail, especially by Laufer (1955)* and by Klebanoff (1956),
and there is little doubt that in it the basic requirements of energy equilibrium
and universality of structure are nearly satisfied so far as the motions respon-
sible for momentum and heat transfer are concerned. In most flows along solid
walls, a constant-stress layer may be distinguished in which the mean velocity
varies in the way given by equation (4.3) but, if the flow is opposed by a strong
adverse pressure gradient, the constant-stress region forms only a small part of
the total equilibrium layer defined by the conditions (3.10). Even though the

¢ In a pipe or channel, the stress variation is linear, but the thickness of the equi-
librium layer is small compared with the channel width, and, to the same approximation,
the stress variation is negligible.
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stress gradient depends on the varying flow acceleration as well as the constant
(with y) longitudinal pressure gradient, (4.1) is often a satisfactory approxima-
tion to the stress distribution and the distribution of mean velocity is given by
equation (4.4). This equation takes a more convenient form if ay > 7, (« neces-
sarily positive):

2(1-B [, 4k
U= (K )(ay)§+1—2[log;3+A—2(l—B)], (4.5)
which differs from the velocity distribution in a layer of zero wall stress,
y Y
2
U = — (oay)t + C(av)} (4.6)
K,
08 T T T T T T ' T :‘ [-]
7 X
a” - )
o pd X/ v ° -1
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Ficure 1. Distributions of mean velocity in a turbulent boundary layer near separation
(from Schubauer & Klebanoff 1951). @, x=2564ft.; x, x=250ft.; O, x=24-6ft.;
v, x=240ft.; X, x=230ft.; A, z=22-0ft. N.B. Separation occurs between
z = 256 ft. and = = 26-0 ft. Reynolds number = 10¢ ft.-! Dashed curves indicate limits
to validity of approximations.

(Stratford 1959a; Ellison 1960), only in the additive constant which represents
a ‘slip’ velocity at the edge of the layer. Because of the condition rhaw) 1 > 20,
equation (4.5) does not hold for very small values of 7, and its limiting form as 7,
approaches zero is slightly different from (4.6). Notice that if the viscosity is
very small, i.e. the Reynolds number is large, log (474 /av) becomes large and
a comparatively small wall stress may produce a large slip velocity.
Experimental evidence of the occurrence of velocity distributions of the form
(4.5) can be found in the measurements by Schubauer & Klebanoff (1951) of
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flow in & turbulent boundary layer immediately upstream of the position of
separation of flow from the surface. In figure 1, some of their measurements of
mean velocity are plotted against the square root of distance from the surface,
and extensive linear regions are found for the positions, = 24-5, 25-0, 25-4 ft.,
and less extensive ones at positions further upstream. The region of validity of
the logarithmic distribution (4.3) does not extend beyond y = 0-08in. although
the total thickness of the layer is between 6 and 7 in. These measurements may
be used to estimate the ‘zero-stress’ constant K,, but uncertainty in the magni-
tudes of the flow accelerations makes the calculation difficult.* Using smoothed
values of the acceleration at the wall-end of the linear regions and the measured
glopes, it is found that K, = 0-48 + 0-03,

which may be compared with the value of 0-50 (Townsend 1960) based on mea-
surements by Stratford (19595) in a self-preserving flow of zero wall stress. Since
K, = K/[(1— B), the diffusion constant B is about 0-2 and is of the expected sign.

Another kind of equilibrium layer is found on a porous wall though which
fluid is moving with an average velocity ¥;. If the longitudinal pressure gradient
is not too large, the acceleration of the mean flow will also be small and the
momentum equation reduces to

oU or
"o " o
which integrates to
7—UV, =1, (4.7)

showing that the total flux of momentum from the wall is independent of y.
Substituting in the basic equation (3.9) and integrating, we obtain

2 U
% [(To+ UV —‘rg] + BsgnV,log (1 + T_Io{)) = log y + const., (4.8)

where the constant of integration is expected to depend on the nature of the
surface and on ¥, 7, and v. For small values of UV,/7,, the distribution must
become identical with the logarithmic distribution, and so

3
gIﬁ[(‘ro+ UV, — 141+ BsgnVlog (1+£]K") = logT—°g+A. (4.9)
A To v
Except for the term Blog {1 + (UV,/7,)} sgn¥,, which is usually small, this equation
is that derived from the mixing-length theory by Dorrance & Dore (1954) and
by others, and it has been confirmed by measurements of velocity distributions

in boundary layers with suction and blowing (Black & Sarnecki 1958).

5. Equilibrium layers and self-preserving flow

A turbulent flow is self-preserving in structure if the motions at different
sections of the flow differ only in scales of velocity and length, and are dynamic-
ally similar in those aspects of the motion that control the distributions of mean

* The flow accelerations are negative and equal to about one-third of the longitudinal
pressure gradient.
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velocity and Reynolds stress. The importance of self-preserving flows in the
theory of turbulence is that the governing equations become ordinary differential
equations and that predictions of growth and of friction are then possible, but
only a few types of flow can be exactly self-preserving. A greater number can
develop in a nearly self-preserving way and it is useful to distinguish two ways
in which this is possible. An example of the first kind is the wake of a cylinder in
a uniform stream in which the distribution of mean velocity is of the form

U=0U- “of(?//lo)}

5.1
and the Reynolds stress uv = ugg(y/ly), (6.)

where [, and u, are scales of length and velocity depending only on z, and the
functions f(7) and g(n) are characteristic of the whole flow. Substitution in the
equation of mean motion leads to an ordinary differential equation with solutions
satisfying the condition of constant momentum flux only if I, oc (z—x,)} and
ug oc (x—x,)~t.* In this kind of self-preserving flow, eddy structures and mean
velocity distributions develop in a natural and unforced way from similar forms
further upstream, and the advection terms in the momentum and energy equa-
tions are of the same order of magnitude as those representing local effects such
as stress gradient or rate of energy production. The other kind of self-preserving
development is one of nearly absolute equilibrium and would occur in flow in
& channel whose width changed very slowly. Then the flow at each section would
adjust itself to the local width and, conforming to the principle of Reynolds
number similarity would have velocity and stress distributions of the self-
preserving form (5.1). The condition for this kind of flow is that advection terms
should be negligible in the energy equation.

Considered as a whole, but independently of its outer flow, an equilibrium layer
with the linear stress distribution (4.1) is self-preserving with length scale 7/a
and velocity scale 7§, and the whole of the flow may be self-preserving if these
same scales are suitable for self-preserving development of the outer flow. This
requirement is very restrictive in boundary-layer flow unless either 7, or a is
negligibly small. If these conditions can be satisfied, exactly or approximately,
the course of development may be obtained from the equation of mean motion
in terms of the velocity distribution function. This function has the form given
by the similarity arguments in the equilibrium layer and a good approximation
to it in the outer flow may be obtained by assuming

(i) that the Reynolds stress is related to velocity gradient by a coefficient
of eddy viscosity depending on x alone, i.e.

—'I—LT) = VT%%’ (5.2)

(ii) that its magnitude is determined by the condition
1
- [w-vyay = B, (53)
T

where R, is a constant characteristic of the kind of flow (boundary layer, channel,

pipe, etc.),
* Exactly true only if U,—- U < U,.
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(iii) that the velocity distribution in the outer layer joins smoothly the
velocity distribution in the inner layer. Clauser (1956) and Townsend (1956a,b,
1960) describe some experimental measurements that confirm these assumptions.

6. Boundary layers in adverse pressure gradients

To the usual boundary-layer approximation, the equation of mean motion
for a boundary layer is

oU oU owv aU,
z + V"a—y- + ay = [Jla s
where U, is the velocity in the free stream and two-dimensional mean flow is
assumed. Substitution of the self-preserving forms for the distribution of mean
velocity and Reynolds stress (5.1) gives

d(uyUy) . uod(Uily) o, du, a Yo d(uely) ., ug _

_dz__f+KT”f +u—o—f _-l;Tf fofdﬂ‘i'l—og =0, (6.2)
which is an ordinary differential equation with independent variable 7 = y/l,
if the coefficients are in constant ratio. It follows that dly/dxr = constant,
%,/U; = constant, (lo/,) (due/dx) = constant, but the scales so defined must be
compatible with the scales of the equilibrium layer, 4 = 73, l, = 7o/, which is
only possible either

U (6.1)

(a) if U, oc (xg—2)t oc 78, I, oc (xo— ) (Townsend 1956a),

or (b) if 7=10, U oc (x—xp)~ %%, [, oc (x—x,) (Stratford 1959a,b; Townsend
1960).

The first is an accelerating flow in a converging wedge and the second a zero-
stress flow in an adverse pressure gradient.

The converging flow may be regarded as the prototype of a family of approxi-
mately self-preserving layers which share two of its characteristics, an equi-
librium layer of nearly constant stress and an outer layer with small velocity
defects [(U; — U) < U] at high Reynolds numbers. If the distribution of velocity
in the equilibrium layer is given by the logarithmic equation (4.3), the velocity
defect always becomes small at sufficiently large Reynolds numbers and self-
preserving flow in the pressure distribution defined by U, oc (z —z,)? is possible
if @ > —}(x > z,). For values of a close to — } the wall stress is very small and
the pressure gradient large so that a large variation of stress in the equilibrium
layer is inevitable (Dunn 1956).

Flows in these strong adverse pressure gradients must resemble more closely
the zero-stress self-preserving flow, and we now consider nearly self-preserving
flows with equilibrium layers whose stress distribution is nearly linear with a
characteristic length 7,/ small compared with the thickness and a velocity
distribution given by equation (4.5). The distribution of free stream velocity is
assumed to be U, oc (z — z,)® and, as in the zero-stress layer, the scales of velocity
and length are the free stream velocity U, and (x—z,). Substituting these scales
in equation (6.2) yields

2af — (a+1)7f’ —af*+ (@ +1) f* fofdn—g' -0, (6.3)
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which has a self-preserving solution if the inner boundary condition can be
expressed in a form independent of z. Within the equilibrium layer and not too
close to the wall, the velocity distribution function is

—z) T
s = G [ (64
where {= 3 [log 47&+A 2(1—- B)] (6.5)

and the flowis self-preservmg if {and a(x — z,)/U?% are constant. It will be seen that
this can not be exactly true but the variation of { is very slow and it is reasonable
to suppose that the flow adjusts itself to the local value of { and resembles the
hypothetical self-preserving flow of constant { over moderate ranges of z.

The wall stress is related to the velocity distribution and the pressure gradient
by the equation for the momentum integral,

d [ du, (= ~
d_xjo U(Ul—U)dy+—J;Jo (U,— U)dy = 7o, (6.6)
or in terms of the function f(7),
(2a+1) (I~ b)+al, = 7o/U3, (6.7)
where L={"toman 1= " trmran

This relation is consistent with the assumption of self-preserving flow if the
variation of 7,/U% is small compared with —al,.

The velocity distribution function is now obtained using the eddy-viscosity
assumptions of the last section. Making use of equations (5.2) and (5.3), the
distribution function in the outer layer satisfies

%f — (@ +1)nf" —af*+ (a+ l)f’fofdn+laf'/R, -0, (6.8)

a form of the Falkner-Skan equation. For flows in strong adverse pressure
gradients, the wall stress is small compared with the pressure force on the layer,
ie. 7,/U? € —al,, and may be neglected except in 8o far as it determines {.
An approximate solution of (6.8) satisfying the boundary conditions

f(O) =C, fl(o) =0, f’(O) = Rsca(2—'0)/'[a

is fln) = Cexp (—3R2p?), (6.9)
where IR*=—aR(2-0). (6.10)
For a smooth junction with the velocity distribution in the equilibrium layer
sty =" 1-Ceoxp (- }R%3) = {+2K5 H(egm)t,

CR, exp (— }R*3) = K5 *(ao/m)}, (6.11)
where a, = —a(l —{?) very nearly (see Appendix). Approximately, if R%33 is
not too large, I, = (3m) CR- + 20, /3K R?,

I, = ymCeR 4 2204 2% o (6.12)

31(21‘i€2+3K2 (K, CRz)i
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The solutions of these equations are conveniently presented by plotting the
friction coefficient 7,/U3 as a function of ¢ for various values of the exponent a
(from equations (6.7), (6.10), (6.11) and (6.12)) and as a function of ¢ for various
values of — 3aR, (substituting values of { obtained from equations (6.10), (6.11)
and (6.12) in equation (6.5)). This has been done to slide-rule accuracy in figure 2,
in which possible self-preserving flows are represented by intersections of the two
families of curves, e.g. in the pressure gradient defined by a = — 0-24, the friction
coefficient is nearly 7,/U% = 9:6 x 10~ at a Reynolds number of 108, The two
bounding curves indicate the limits of validity of the approximations used, the
left-hand curve imposing the condition that the constant-stress part of the
equilibrium layer is fully turbulent and the right-hand one that the wall friction
plays a small part in the momentum balance.*

1-6

7o/ UY x 108

10

FiaureE 2. Boundary-layer development with a ‘linear-stress’ equilibrium layer. The
numbers on the ‘upper’ family of curves refer to values of the exponent a, and on the
lower family to values of —3aR, which is not much different from R,.

The most interesting feature of these solutions is that two different layers
are possible, one with comparatively large wall stress and small velocity defect
and another with low stress and large defect, but this is only consistent with the
known existence of a zero-stress layer for a ~ — 0-23 (Stratford 195954) and of
finite-stress layers for this and more negative exponents (Clauser 1956). In
figure 3, the friction coefficient is shown as a function of Reynolds number for

* Conditions for internal consistency of the ‘linear-stress’ approximation are derived
in the Appendix. It turns out that they are satisfied if 7,/U? < - 3al,.
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flows of constant exponent and it is seen that, although flow at infinite Reynolds
number is possible with exponents as negative as —4, the limiting value at
ordinary Reynolds numbers is very much less, changing from —0-25 near
R, = 3x10°to —0-28 near R, = 10%. It is interesting to compare this variation
of the friction coefficient with the dependence in a flow constrained by a con-
tinuous, slight adjustment of the pressure gradient to obey the defect law

U =U-18F(y[8) (6.13)

7o/ Ul x 103

logy(—3aR;)

FIGURE 3. Variation of wall stress with Reynolds number for a boundary layer with a
constant exponent. (The short broken lines represent measurements by Clauser in pressure
distributions I and II.)

in the outer flow (figure 4). If development takes place along the upper branch
of the friction curve, the necessary adjustment is small and development with
constant exponent might be indistinguishable experimentally from development
with constant velocity-defect ratio, but along the lower branch this is not true.
On this branch, the defect constant C approaches a constant value as the
Reynolds number increases and the wall stress tends to zero comparatively
rapidly.

Some comparisons of these theoretical predictions with the measurements of
Clauser (1954, 1956) are given in table 1. If it is remembered that uncertainty
in the position of the flow origin leads to considerable uncertainty in the appro-
priate values of B, and a, the agreement is quite satisfactory. Lines showing the
observed variation of friction with Reynolds number have been drawn on figure 3
and it is clear that flow I is developing along the upper branch. Flow II is in a
region of ambiguous development and its observed development is not described
by this theory. However, Clauser adjusted the pressure gradient so that the outer
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flow obeyed the defect law (6.13) which, in this region, requires an ‘unnatural’
course of development, and it is not surprising that the maintenance of this
development was difficult and that, unlike most self-preserving flows, small
deviations tended to grow rather than to disappear. Some remarks of Stratford
(1959b) suggest that flow on the lower branch is stable in this sense and so this

T ¥ ¥ ¥ ¥ T 1 ¥

T/UT x 103

0 —1 1 L A 1 1 1 ]
7 8 9 10

logyo (—3aR,)

FI16URE 4. Variation of wall stress with Reynolds number for constant velocity-defect
ratio, U, C/-rg, in the outer layer. The numbers near the curves are the corresponding values
of the ratio. (N.B. The measured defect ratio for distribution I is 12, for distribution
II, 24.)

Observed
' war, [ v A
Flow 7,/ U? T, dz —3al, c 1o/ Ul a c
I 95x10¢ 2 57x10  0-39 { oo 104 :3:215 31331
I 50 7 10-5 0-53 { 222 :8:223 g::g:

N.B. The theoretical values refer to two values of Reynolds number, 0-76 and 1-5 x 108,
and the observed values of — 3al,.
TaBLE 1

explanation of this phenomenon of downstream instability has the virtue that
self-preserving development remains a stable asymptotic state for turbulent
flow.

The calculations that are presented in the diagrams have assumed that
K = 0-41, K, = 0-50, B = 0-2, R, = 75, values which have been found to describe
flow in a zero-stress layer (Townsend 1960). The value of R, also agrees closely
with the value necessary to describe boundary-layer development in zero pres-
sure gradient by the procedure of § 5.
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7. Self-preserving flow between diverging planes

The Reynolds number of two-dimensional mean flow between converging or
diverging plane boundaries, based on local velocity and channel width, has the
same value everywhere and so it is possible that the motion is dynamically similar
at all sections of the flow and that the flow is self-preserving. We consider flow
in a wedge of semi-angle 0, with the Oz axis the apex of the wedge and the 20z
plane the central plane of symmetry. To the boundary-layer approximation,
applicable if the angle 6 is small, the equation of mean motion may be written

_fiag = —PrvMY, (1.1)

gelf-preserving flow being implied by the use of the distribution functions, f and
g and the pressure recovery coefficient, 2, defined by

U= Mf@m)|z, V=DMyftn)lz, 7=yl

o8 dP, (1.9)
MEdx®

It is convenient to define M so that f(0) = 1,i.e. M/x = U,, the mean velocity in
the central plane at distance x from the apex. The Reynolds number of the flow is

R, = Uyz/v = M/v.
Integrating equation (7.1) from the centre line to the wall,

f : fidy = 26+ Uz’ (1.3)

where 7, is the shear stress on the walls of the diffuser.

For sufficiently large Reynolds numbers, the converging flow takes the form
of two boundary layers separated by a central region of negligible Reynolds
stress,* but a diverging flow must be turbulent over the whole width of the
channel. We now apply to the diverging flow the same procedure that has been
used in § 6 to obtain the mean-flow properties of self-preserving boundary layers.
Outside the equilibrium layers, the mean velocity distribution is found by
assuming a constant coefficient of eddy viscosity, given by

——f (U, — = I (1.4)

where R, is a constant characteristic of fully developed flow between plane
boundaries. Measurements by Laufer (1951) of pressure flow between parallel
planes indicate that R, = 28 + 3. Within the central flow then, we have

W = M ig(y), P =

P+ LIB)" =2, (1.5)
and the solution of this equation for the boundary conditions f(0) = 1, f'(0) = 0
is
oI, b, (XA dt
, 7.6
1=|zazal Al oma-wan w0

* In a rapidly accelerating flow, the only strong sources of vorticity are the walls and
80 boundary layers develop.
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where f%, f% are the roots of 22— 3z +3(1 — %) = 0, and
k=p/f (Br<p;) and X*=1-f().
The integral in (7.6) is tabulated as the elliptic integral of the first kind,
Fa) = J‘= dt
o [(1—12) (1 —k22)]}

and its inverse function, sn, is defined by

sn[F(z)] = z.
The velocity distribution function is
B(1-2)\t 9
=1-— 2 2 [{ 5 } ] ’ 1.1
f(”) ﬂl sn 2Ia ﬂl ( )

and a good approximation to the flow integral I, is
L= 6{1 —f(g)}dn = _ 2, t Vi “ sntud
a_fo (”)} n= [R (l g) 1 0 sn“uau

21, 872
- [z AerE-B) 1.8)
where F, E are the elliptic integrals of the first and second kinds evaluated at
X(6)/p, and 3 Rs(1-g’)]% 6
- &
Using the relations between £,, # and k implied by the definition of 8,, i.e.
3k 3k
A= 7@ ! -P = T+
it follows that R, I, = 2(F —E) (7.9)
and the wall stress is given by
To 18 &2

UET af( )—R?(l+k2)2(F—E)snulcnu1dnu1. (7.10)

Both these relations depend on the approximation that the difference between
the true value of the flow integral, I,, and the value found by assuming the
central velocity distribution (7.7) to extend all the way to the wall is negligible.
These equations relate & and 7, if @ and R, are known, and their values are found
by imposing conditions for a smooth junction of the central velocity distribution
with the velocity distribution in the equilibrium layer.

For a linear variation of stress in the equilibrium layer, 7 = 7,4+ ay where
ay > 1, for most of the layer, and

f) =+ 2K51 (-8 (6 —-n)]H, (7.11)
since the stress gradient in the layer is nearly (#—{?) Uiz ! (see Appendix).
The conditions for a smooth junction are that

¢+ 2Ku‘1[(g”—§’) @—-m)t =1 —ﬂ?snzun}

1 (Pt ,, Rt

(7.12)
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The assumption of linear stress implies that sn 4, = 1 and that

(P8 (0—m) > 7/UL,
80, eliminating 6 —7,, we have

[ @-0] = 1-4 (1.13)
essentially a relation between ¢ and #. Now { is related to the wall stress by
1 §
— To_ a1 R, —2(1—
= KU, [log (Ui .?_—g?) +A4-2(1 B)], (7.14)
and the condition snu, = 1 can be expressed as
R,0 = 6K(K —E), (7.15)

so that the wall stress can be calculated as a function of flow Reynolds number
and angle of divergence. The results of these calculations are shown in figure 5
with an indication of the limit of validity of the approximation that 7, < ay,.
Validity of the approximation that the stress distribution is substantially linear
can be expressed by the condition

1008 < 1

(see (A. 20) in the Appendix). 106%¢ is about 0-30 for # = 0-05, and so the results
of this treatment are only applicable for larger values of &.

A special case of some interest is the flow with zero wall stress and with { = 0,
which occurs at a critical angle of divergence 6. This angle depends on the values
of K, and R,, but the pressure recovery and R0, are functions of K,R} and
a few values are tabulated in table 2.

Assuming K, = 0-50, R, = 28, we find 6, = 0-075rad. = 4-3deg., & = 0-53.
Milliat (1957) has reported steady diffuser flow for a semi-angle of three degrees
which is not much less than this calculated value. It should be emphasized that
secondary flow is very likely to occur in these flows and will cause separation of
flow from the walls at smaller angles of divergence than the critical value for
truly two-dimensional flow. An interesting point about the critical flow is that
the pressure-recovery coeflicient is less than for flows in wedges of smaller angle.

If the stress in the equilibrium layer is nearly constant,

) = 2% [1o8 {8 R0~ + 4] (1.16)
and the conditions for a smooth junction are

7

* N
10 To _ 1l = 1 p2an2
T, [log iUi R(0 171)} +4 1] 1—-p3sn%u,

N 1 _RT
and RGG-7, LUV

(7.17)

or, eliminating 0 —,,

i

1| = 2
F¢A [logR +logKR +4 1] 1—f3sn?u,. (7.18)
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F1aUrRe 5. Self-preserving flow in a wedge with a ‘linear-stress’ equilibrium layer.
(@) Variation of wall stress with Reynolds number for various angles of divergence. (The
broken portions of the curves are outside the range of validity of the linear-stress approxi-
mation.) (b) Variation of pressure-recovery coefficient with angle of divergence. (The
dashed curve shows, for comparison, the variation for 6B, = 3 x 10% if the equilibrium
layer is of nearly constant stress.)

Ko R}
1-64
2:12
2:83
4-26

0-718
0-614
0-520
0-441

TABLE 2

b,R,
0-935
1-492
221
311

Fluid Mech. 11
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This equation and equations (7.9) and (7.10) determine 7,/ U} and & as functions
of R_for a given 0, and the results of solving these equations are shown graphically
in figure 6. The approximation of constant stress is valid if the corresponding
velocity distribution could be maintained with a small variation of stress in the
equilibrium layer and the condition for this, derived in the Appendix, is

7o/ U% > 0-26%,

08 T T T T T 1 T
06—/" -
% 003 002 001 -
04f- =
p——t—t—+—+—

39\04003 002 001

To/ Uy X 10°

logy R

Ficure 6. Self-preserving flow in a wedge with a ‘constant-stress’ equilibrium layer.
(The broken portions of the curves are outside the range of validity of the constant-strees
approximation.)

It follows that the constant-stress approximation will fail at very high Reynolds
numbers however small the angle of divergence, and that the increase in pressure-
recovery coefficient with Reynolds number has a limit.

Ruetenik (1954, see also Ruetenik & Corrsin 1955) and Craya & Milliat (1955)
have made studies of the self-preserving turbulent flow in a wedge of semi-angle
one degree, each at a Reynolds number of nearly 1-8 x 10%. Reference to figure 6
shows that these conditions are within the range of validity of the constant-stress
approximation, and that the theory predicts a friction coefficient 7,/ U2 = 15x 104,
and a pressure coefficient & = 0-67. The two sets of measurements are in good
general agreement but Ruetenik gives rather more detail. He finds that
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7o/Ut = 13+ 1-3x 1074, and & = 0-57 and his measured distributions of mean
velocity and of Reynolds stress are compared with the theoretical distributions
in figure 7. Excepting the large difference between the observed and predicted
values of &, general agreement is found and the discrepancies can be attributed
to uncertainty in the value of the flow constant B,. A considerable part of the error

10 T T

| | e &1
./‘
o
/./
o8| / 7
E- /.
b L]
06 o -
e —

7/60

F1GURE 7. Comparison of theoretical predictions with measurements by Ruetenik (1954)
of velocity and stress distributions in a diverging wedge of semi-angle one degree. (Experi-
mental results @, theory .)

in # is due to assuming that integrals over the whole flow can be approximated
by replacing the composite velocity distribution by the velocity distribution
for the central flow extrapolated to the walls. This procedure underestimates

0
I, and overestimates the integralf Sf2(n)dy by about 10%,. Since
0
P06 — J” frag_To
RO

the overestimate is reflected in the value of #. The necessary modification of
the equations is straightforward but their solution becomes even more tiresome.

8.2
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8. Discussion

The essential property of an equilibrium layer is local and absolute equi-
librium between energy supply and dissipation, and definition by this property
rather than by stress equilibrium extends considerably the applicability of
similarity arguments. If we are interested only in the mean-velocity distribution
inside the equilibrium layer, the only gain over simple acceptance of the momen-
tum-transfer theory is a plausible explanation of the difference between the
Karméan constant and the corresponding constant for zero-stress flow, but the
requirement of energy equilibrium sets clear limits to the extent of the layer
which are not provided by the mixing-length theory. It is interesting that the
energy equilibrium is of the same kind as that assumed in the theory of local
similarity, the difference being that one is localized in physical space and the
other in wave-number space. Unlike the motion described by the theory of local
similarity, the motion in an equilibrium layer has an influence on all parts of
the flow, and the second half of this paper is an attempt to develop a method for
solving the mean-flow problem in wall flows with different kinds of equilibrium
layers. The origin of the method is an observation of Clauser (1956) that the
velocity distribution in the outer part of self-preserving boundary layers is
nearly that produced by an eddy viscosity of constant ratio to the integrated
velocity defect at the particular section. Although the final results are not very
sensitive to this assumption, comparison with experiment suggests that the
eddy-viscosity hypothesis gives a good description of the mean-velocity dis-
tribution and that the constant ratio may depend only on the conformation of
the bounding surfaces and not on the pressure gradient.

The hypothesis that the turbulent motion in an equilibrium layer is in a uni-
versal state determined by the stress distribution is not confirmed by numerous
observations that turbulent intensities in constant-stress layers vary consider-
ably between different flows of the same stress. This is in strong contrast with the
universality of the distributions of mean velocity and it is difficult to reconcile
these observations without supposing that the motion at any point consists of
two components, an active component responsible for turbulent transfer and
determined by the stress distribution and an inactive component which does not
transfer momentum or interact with the universal component. This does not
mean that the eddy structures contributing to the inactive component at a
particular point can not form part of the active component at points further
from the wall, and it seems likely that the inactive motion is a meandering or
swirling motion made up from attached eddies of large size which contribute to
the Reynolds stress much further from the wall than the point of observation.
If this is true, the ratio of turbulent intensity to Reynolds stress would in-
crease with total thickness of the constant-stress layer, and comparison of the
ratios in the very thick boundary layer on the earth’s surface and in laboratory
boundary layers confirms this.
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Appendix: stress distributions in equilibrium layers

The procedure descrited in §5 gives good results only if the simplified dis-
tribution of stress in the equilibrium layer, assumed for mathematical con-
venience, bears some resemblance to the real distribution. Close resemblance
requires that the stress distribution computed from the assumed velocity dis-
tribution and the inferred rate of development of the layer should be nearly
the same as the assumed stress distribution. If the stress variation in the equi-
librium layer is assumed to be small, the velocity distribution is given by the
logarithmic profile, and it is easy to show that the distribution of stress must be

dP 1 dr 7} 2
‘r—‘ro=a—;1y+2—1(2d—:y[(logivq+A—l) +l] (A.1)
within the equilibrium layer. The original assumption of constant stress is only
valid if 7—7, so computed is small compared with 7.

If a self-preserving boundary layer has an equilibrium layer of nearly constant
stress, the velocity defect outside the equilibrium layer is small at sufficiently
large Reynolds numbers, and wall stress and Reynolds number are related by

R_=(1+3a)K3Lytexp(y1-A4), (A.2)
Uu,-U

where =KD, L= [ KA,
0 7§
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and 7= ‘ivg-/ exp (4 —y1).

Assuming a constant eddy viscosity in the outer layer, the velocity distribution

funotion is ftn) = K(U,~ U)jr§ = CHh,(Bn), (A9
KR} (1+a)\} 2a

where R= I (1+—3a) , =ire

and the function H#, is defined by

Hho@) = [“Doxpl-de+olldt . Hho(o) = —Hhpo@) (A4
(Jeffreys & Jeffreys 1950, p. 622). In the constant-stress equilibrium layer,
f(n) = —logy and the integral I, is nearly

I, = CR'Hh, 1,(0) +7,, (A.5)

where 7, specifies the junction of the two layers. The conditions for a smooth
junction are approximately

1—-CHR,(0) =logn,, CRHA, ,(0) =971, (A.6)

i b2
so that I, CR = KR*(““) - me
1+ 3a 2in+i(in 4+ 1!

The three equations (A. 5), (A. 6) and (A.7) determine C, R and I, as functions
of the exponent a. From the friction equation (A. 2), we have

d‘ro szz aus

and, to the approximation that y < 1,

+at2in(dn— 1. (A.7)

[1+0()] (A.8)

T—-Te _ 2a "71(108771—1)

To 3a+1 I (4.9)
Using the values of #, and I, given by equations (A. 6) and (A. 7), we find
- - Y
T—Ty _ 2a 1 (3n })., (A.10)

To  [2(1+a)(1+3a)} KR} (3n)!

omitting the small second term on the right of (A. 7). This shows that the stress
variation in the equilibrium layer must become very large as a approaches the
critical value of — {, whatever the Reynolds number. For a = — 0-2, the ratio is
nearly 0-4, and so the assumption of constant stress in the equilibrium layer must
fail for more negative values of a.

A similar calculation of the stress variation in the equilibrium layer of self-
preserving wedge flow leads to

T-1,_ 1, U} To ]
————To .K_R, 1-‘ [.@ (1 ﬂzsn ul) _,Kz—Uf N (A.ll)

and substitution of values of I, 7o, 2, #, and u, would show whether the constant-
stress approximation is permissible in any particular flow. The condition for
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this may be expressed more compactly and with sufficient accuracy by observing

that
I, 6 1

KR, 2K(1+Kk)F?

(equations (7.9) and (7.10)) and that & —(1— fisn?u,)? = 0-25, 14-k% = 1-25,
F? = 1-5 very roughly for all the points calculated in figure 4. Substituting these
approximate values and allowing a 50 9, variation of stress in the equilibrium
layer, the condition for an equilibrium layer of nearly constant stress is that

1,/ U2 > 0-26%, (A.12)

The contrasting approximation is that the stress variation is linear, i.e.
T = 17y+ay with ay > 7, for most of the equilibrium layer, when the velocity
distribution is (equation (4.5))

U = U+ 2K5Y(ay)t, (A.13)

§ §
I‘![log%+,4-2(1_3)].

where U= )4

The stress distribution necessary to maintain this velocity distribution is

dP, _dlj 2 dal) . 2 da
T_T°"(d +qu) tika & Y TakiEYr A

and the linear stress distribution is a good approximation to this distribution if
_dp ay,
=%l

and if the last two terms on the right-hand side are small compared with the first.
In a boundary layer, dP,/dx = — U, dU,/dx, and { = U/JU, varies much more
slowly than U, so the conditions for smallness become

2 1-30_§ (m\t
S ot G () <0

(A.15)

3K,(l 2a)y1 <1 (A.16)
Substituting in the first condition the value of 7, = y,/z implied by equations
(6.10), (6.11) and (6.12), we obtain the condition for development with an equi-
librium layer of nearly linear stress distribution

21— 3“) (K ARE £ <1 (A.17)

T "3a g
This condition is satisfied if the exponent defining the pressure gradient is
more negative than the value for zero-stress development, a = —0-23. The

second condition of (A. 16) imposes no additional restriction. A last requirement
is that ay, > 7,, necessary for validity of the velocity distribution (A.13). Using
the approximate forms of equations (6.10), (6.11) and (6.12),

CR = —a(2/m} R, (2-C), {=1-C,
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we find that the requirement is satisfied if

r \}
(z7m) 1-07> Ut (.19

In self-preserving wedge flow, the conditions for smallness of the last two terms
in (A. 14) become

8 ¢

2

Substituting the value of (e« —7,) given by the conditions for a smooth junction
(7.12), we obtain 8 ¢ ( L ) <
3Ky (- \R,K, ’

and, using the typical values of the slowly varying quantities & — {2, (1 +%%)
and F previously listed, we find that the condition is

1068 < 1. (A. 20)
The condition that ay, > 7, may be obtained in a similar way as
6 t .
[iﬁi(—lm (g:_gz)] > 70/ U1,

or, using the typical values,
0-2660% > 7,/ U3, (A.21)



