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Equilibrium layers and wall turbulence 
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Emmenuel College, Cambridge 

(Received 6 December 1960) 

In turbulent flow past rigid boundaries, there can be distinguished regions close 
to the wall in which the local rates of energy production and dissipation are so 
large that wpects of the turbulent motion concerned with these processes are 
determined almost solely by the distribution of shear stress within the region 
and are independent of conditions outside it. These regions are here called 
equilibrium layers because of the equilibrium existing between local rates of 
energy production and dissipation. Three kinds of equilibrium layer have been 
etudied experimentally, the constant-stress layer, the transpiration layer and 
the zero-stress layer, but there are other possible forms. One that is of importance 
in the theory of self-preserving flow in boundary layers and in diffusers is the 
‘linear-stress’ layer in which the stress increases linearly with distance from the 
wall. The properties of these various equilibrium layers are considered and the 
distributions of mean velocity are derived from the equation for the turbulent 
kinetic energy and certain assumptions of flow similarity. 

The theory of self-preserving wall flow, usually expressed aa a combination 
of the law of the wall and the defect law, assumes compatibility between the 
outer flow and the equilibrium layer, and the course of development depends on 
the kind of equilibrium layer. Earlier work by the author, which assumed the 
defect law, is only valid if the whole of the equilibrium layer is a conatant-stress 
layer and this is not true in strong adverse pressure gradients. A consistent theory 
ie developed for these flows by assuming a ‘linear-stress’ layer, and the solutions 
show the relation between flows of finite stress and of zero stress and provide a 
plausible explanation of the phenomenon of downstream instability observed 
by Clauser. Self-preserving flow in wedges is treated on similar linea. 

1. Introduction 
So much has been written about the defects of the mixing-length theories of 

turbulent flow that it can be forgotten that the momentum-transfer form of 
this theory provides a simple and accurate description of the mean flow near a 
rigid boundary, but the usefulness of this limited success depends on estab- 
lishing the conditions for its validity. The more fundamental objections to the 
general validity of the mixing-length approximation concern not so much the 
orudity of the assumed mixing process as the dependence of mixing length and 
eddy transport on local conditions in the flow, and they are supported by 
observations that the turbulent kinetic energy at a point may depend w much 
on transport processes from remote parts of the flow as on local production and 
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dissipation. These objections that a turbulent flow is an integrated whole and 
not an assembly of quai-independent flows do not apply to important aspect( 
of the flow near a rigid boundary where the balance of turbulent kinetic energy 
is virtually unaffected by the n a t m  of the flow in adjacent regions. Layera in 
which these conditions are satisfied to an acceptable approximation will be cded 
equilibrium layers and it will be assumed that they possess an essential univer- 
sality of structure which shows itself as a simple dependence of mean velocity 
gradient on Reynolds stress and distance from the boundary, i.e. apparent 
validity of the momentum-transfer theory. The best-known example is the 
constant-streas layer whose structure has been studied in great detail by Laufer 
(1955), Klebanoff (1956) and many others; other forms are the ‘zero-stM’ 
layer (Stratford 1969a,b) and the equilibrium layers on porous walls with trans- 
piration (e.g. Dorrance & Dore 1954; Black & Sarnecki 1958), but this does not 
exhaust the possibilities. The purpose of this paper is to set out the necewiy 
conditions for the existence of an equilibrium layer and to derive a slightly more 
general relation between velocity gradient and shear stress than the mixing- 
length relation. With this, a unified description of the layers is possible and thin 
description is applied to correct and extend the theory of the development of 
self-preserving boundary layers in adverse pressure gradients (Townsend 
1966a,b). A similar theory may be developed for self-preserving flow in conical 
or wedge-shaped diffusers. 

2. Notation 
Two-dimensional mean flows are described in terms of rectangular co-ordinah 

with the direction of mean flow in the zOy plane and with the Ox axis either 
parallel to the wall (in a boundary layer) or in the plane of symmetry (in wedge 
flow). Axisymmetric mean flow is described in polar co-ordinates with Ox the 
axis of symmetry. Then 

U, V ,  0 are the components of the mean velocity, 
u, v, w are the components of the velocity fluctuation, 

P is the fluctuation from the mean pressure P, 
Y is the kinematic viscosity, 
8 is the local rate of destruction of turbulent energy by viscous forces, 
7 is the local Reynolds streas, 
K is the K&rm&n constant, 
B is a diffusion constant, and 
KO is a constant characteristic of zero-stress layers. 

Kinematic stresses and pressures are used, i.e. the mechanical quantities divided 
by the fluid density. Values at the rigid boundary are distinguished by the 
sd%x 0 and in the free stream or on the axis of symmetry by the suffix 1. 

q a  = ua+v2+wa, 
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3. Energy equilibrium in wall turbulence 

and Reynolds stress are related by 
In the momentum-transfer form of the mixing-length theory, velocity gradient 

where I is a length whose magnitude must be inferred by dimensional or other 
considerations, and it is fairly well known that an equivalent relation may be 
derived from the equation for the kinetic energy of the velocity fluctuations 
assuming local energy and structural equilibrium (Rotta 1953). The equation 
is, to the usual boundary-layer approximation, 

a(@) a ( @ j  -au a 
a Y  a Y  

+uv-+-(&%+jz)+e' = 0 U- + v- ax a Y  
--- 

and el = - v[uVzU + vV% + wV%] is almost identical with the local rate of con- 
version of turbulent energy to heat, e, in the fully turbulent part of the flow. 
The first two terms represent the net effect of advection of turbulent energy by 
the mean flow, and the first requirement for an equilibrium layer is that they 
should be negligible compared with the rate of generation of turbulent energy, 
-Uv(aU/ay). The fourth term is the net rate of energy loss by turbulent diffusive 
movements and by working against turbulent pressure gradients. If this term 
is also negligible (the majpitude of this term and its effect on the energy balance 
is discussed below), the energy equation becomes 

-au 
2Y 

-uv-  = e, (3.3) 

indicating local equilibrium between the production and dissipation of turbulent 
energy. 

Dissipation of energy in turbulent flow depends on working against viscous 
forces caused by intense velocity gradients of very small scale, and these gradients 
rn maintained by a continuous process of stretching vortex-lines by diffusive 
movements. Much theoretical and experimental work shows that the rate is 
independent of the viscosity of the fluid and is determined by the components 
of the motion that contribute most to the turbulent energy and to the Reynolds 
etress (Batchelor 1953). Another characteristic of turbulent flow is that pro- 
longed unidirectional shear leads to the attainment of a condition of structural 
similarity in which velocity fluctuations at different points in the flow are 
etatistically similar.* If this is true, the local motion is specified by a scale of 
velocity and a scale of length, and it follows from dimensional considerations that 

and that 

The experimental evidence for structural similarity is derived mostly from measure- 
ments of free turbulence or of pipe and chennel turbulence outside the equilibrium layers 
(Townsend 1956a, pp. 77, 152, 179, 204, 212, 263), and direct evidence for its existence 
in equilibrium leyem is very incomplete. Some of the difficultiee are mentioned in 8 8. 

7-2 
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using (;T")* 88 the scale of velocity and L, aa the scale of length. Combining 
equations (3.3) to (3.5), we get 

which is equivalent to the mixing-length result if 1 = a! L,. 
The relation (3.6) between gradient of mean velocity and Reynolds s t rw 

becomes useful if the dissipation length L, can be inferred aa a function of position 
in the flow, and it is usual to assume that 

i = d ~ ,  = KY, (3.7) 
where K E 0.41 is the K&rm&n constant. Dimensional remoning confirms this 
assumption if (i) the scale of the motion is unaffected by the width of the whole 
flow, and if (ii) the scale of motion is unaffected by length scales characteristio 
of the stress distribution in the equilibrium layer. The first of these conditione 
may be satisfied by requiring that the equilibrium layer occupies only a small 
fraction of the total width of the flow (a second condition for an equilibrium 
layer), but the second can only be a working hypothesis justified by results. In 
physical terms, this condition could be satisfied if the Reynolds stress at any point 
were caused mostly by contributions from eddies whose scales are comparable 
with distance of the point from the wall since they all extend to the wall and are, 
in a sense, attached to it. Further, the distribution of Reynolds stress must be 
such that it can be produced by a possible size distribution of these eddies, and 
the only layer for which this is obviously possible is one of constant stress. 

So far, the effects of lateral transport of turbulent energy, represented by the 
term a(&%+jZ)/ay, have been neglected, but the hypothesis of structural 
equilibrium indicates that 

where a, is a constant of order one, and the sign of a&ay has been introduced 
to ensure that the net energy flux is down the gradient of turbulent intensity. 
Substituting in the energy equation and omitting the advection terms, we obtain 

$6 +@ = - a,($)# sgn (@/ay), (3.8) 

where B = $Kaza,P. This equation should be valid in the fully turbulent part 
of an equilibrium layer, i.e. in a region defined by the conditions 

or 

1 -au 
ax a Y  a Y  

a7 au 
+v- <-uv-, t u r n  

- a, 1 u-+ ax V E I <  7% 
(3.10) i 

and 

If these conditions are aatisfied, no restrictions need be imposed on the magni- 
tudes of the mean flow acceleration and of the longitudinal pressure gradient.* 

If B(y/~)Ih/2yI > 1, equation (3.9) is meaningless and no equilibrium layer is pos- 
sible. This is most unlikely to occur in unidirectional flow. 

(ii) y < D, where D is the total width of the flow.) 
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4. Distributions of mean velocity in equilibrium layers 
Within the region determined by the conditions (3.10), mean velocity dis- 

tributions are obtained by substitution of the stress distribution in equation 
(3.9). Near an impermeable boundary, the stress distribution may be approxi- 
meted by r = rO+ay, 

and then integration of the equation (3.9) with this stress distribution leads to 

The constant of integration, q, may be regarded as a slip velocity or velocity of 
translation th t  has no effect on the motion in the fully turbulent flow and its 
magnitude may be expected to depend on the nature of the surface and on ro, 
a and v. If the surface is smooth and at rest and if the layer is fully turbulent at 
distances from the wall small compared with ro/a, the velocity distribution (4.2) 
must be identical with the ordinary logarithmic distribution for constant stress 

for small values of ay/ro. For these small values, (4.2) may be written 

and so 

(4.4) 

m e  condition that the layer is fully turbulent at a distance from the wall small 
compared with ro/a is met if ay < ro at the inner edge of the turbulent flow, 
i.e. at y = 20v/r!, the requirement being that ri(av)-1 $ 20. 

The best-known equilibrium layer of this class, the constant-stress layer, has 
been studied in great detail, especially by Laufer (1955)* and by Klebanoff (1956), 
and there is little doubt that in it the basic requirements of energy equilibrium 
and univemlity of structure are nearly satisfied so far as the motions respon- 
sible for momentum and heat transfer are concerned. In  most flows along solid 
walls, a constant-stress layer may be distinguished in which the mean velocity 
varies in the way given by equation (4.3) but, if the flow is opposed by a strong 
adverse pressure gradient, the constant-stress region forms only a small part of 
the total equilibrium layer defined by the conditions (3.10). Even though the 

In a pipe or channel, the streee variation ie linear, but the thickness of the equi- 
librium layer is small compared with the channel width, and, to the m e  approximation, 
the stress variation is negligible. 
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stress gradient depends on the varying flow acceleration as well aa the constant 
(with y) longitudinal pressure gradient, (4.1) is often a satisfactory approxime- 
tion to the stress distribution and the distribution of mean velocity is given by 
equation (4.4). This equation takes a more convenient form if ay 70 (a new- 
sarily positive) : 

2(1-B) U=- K , 

which differs from the velocity distribution in a layer of zero wall stress, 

2 
U=-( ay)’ + C(av)i 

KO 

(4.5) 

/ 
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FIQUR.E 1. Distributions of mean velocity in a turbulent boundary layer near Beparation 
(from Schubauer & Klebanoff 1961). 0 ,  x = 26.4 ft.; X ,  x = 25.0 ft.; 0 ,  x = 24-6 ft.; 
v, z= 24.0 ft.; X ,  x =  23.0ft.; A,  x =  22.0ft. N.B. Separation occura between 
z = 25.6 ft. and x = 26.0 ft. Reynolde number = lo6 ft.-l Dashed c w e a  indicate limita 
to validity of approximations. 

(Stratford 1959a; Ellison 1960), only in the additive constant which represents 
a, ‘slip’ velocity at the edge of the layer. Because of the condition 7l(av)-l % 20, 
equation (4.6) does not hold for very small values of T ~ ,  and its limiting form as T~ 

approaches zero is slightly different from (4.6). Notice that if the viscosity is 
very small, i.e. the Reynolds number is large, log(47i/av) becomes large and 
a comparatively small wall stress may produce a large slip velocity. 

Experimental evidence of the occurrence of velocity distributions of the form 
(4.6) can be found in the measurements by Schubauer & Klebanoff (1961) of 
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flow in a turbulent boundary layer immediately upstream of the position of 
separation of flow from the surface. In  figure 1, some of their measurements of 
mean velocity are plotted against the square root of distance from the surface, 
and extensive linear regions are found for the positions, x = 24.5, 25.0, 25*4ft., 
and less extensive ones at positions further upstream. The region of validity of 
the logarithmic distribution (4.3) does not extend beyond y = 0-08in. although 
the total thickness of the layer is between 6 and 7 in. These measurements may 
be used to estimate the ‘zero-stress’ constant KO, but uncertainty in the m a w -  
tudes of the flow accelerations makes the calculation difficult.* Using smoothed 
values of the acceleration at the wall-end of the linear regions and the measured 

KO = 0.48 & 0.03, 
dopes, it  is found that 

which may be compared with the value of 0-50 (Townsend 1960) based on mea- 
surements by Stratford (19593) in a self-preserving flow of zero wall stress. Since 
KO = K/( 1 - B), the diffusion constant B is about 0.2 and is of the expected sign. 

Another kind of equilibrium layer is found on a porous wall though which 
fluid is moving with an average velocity V,. If the longitudinal pressure gradient 
is not too large, the acceleration of the mean flow wi l l  dso be small and the 
momentum equation reduces to 

au a7 v-=-, 
O a Y  a Y  

which i n t e p h  to 
7 -  UV, = To, (4.7) 

showing that the total flux of momentum from the wall is independent of y. 
Substituting in the basic equation (3.9) and integrating, we obtain 

where the constant of integration is expected to depend on the nature of the 
surface and on V,, T~ and Y. For small values of Wo/~o,  the distribution must 
become identical with the logarithmic distribution, and so 

Except for the term B log { 1 + ( WJT~)}  sgnV,, which is usually small, this equation 
is that derived from the mixing-length theory by Dorrance & Dore (1954) and 
by others, and it has been confirmed by measurements of velocity distributions 
in boundary layers with suction and blowing (Black & Sarnecki 1958). 

5. Equilibrium layers and self-preserving flow 
A turbulent flow is self-preserving in structure if the motions at different 

sections of the flow differ only in scales of velocity and length, and are dynamic- 
ally similar in those aspects of the motion that control the distributions of mean 

* “he flow accelerations are negative and equal to about one-third of the longitudinal 
preaaure gradient. 
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velocity and Reynolds strew. The importance of self-preserving flows in the 
theory of turbulence is that the governing equations become ordinary differential 
equations and that predictions of growth and of friction are then possible, but 
only a few types of flow can be exactly self-preserving. A greater number c8n 
develop in a nearly self-preserving way and it is useful to distinguish two wap 
in which this is possible. An example of the first kind is the wake of a cylinder in 
a uniform stream in which the distribution of mean velocity is of the form 

- 
and the Reynolds stress uv = u;g(y/l,), 
where I ,  and u,, axe scales of length and velocity depending only on z, and the 
functionsf(7) and g(7) are characteristic of the whole flow. Substitution in the 
equation of mean motion leads to an ordinary differential equation with solutiom 
satisfying the condition of constant momentum flux only if lo a (z-zo)a and 
uo a (z - zo)-).* In  this kind of self-preserving flow, eddy structures and mean 
velocity distributions develop in a natural and unforced way from similar forms 
further upstream, and the advection terms in the momentum and energy equa- 
tions are of the same order of magnitude as those representing local effects such 
ZLE stress gradient or rate of energy production. The other kind of self-preserving 
development is one of nearly absolute equilibrium and would occur in flow in 
a channel whose width changed very slowly. Then the flow at each section would 
adjust itself to the local width and, conforming to the principle of Reynolds 
number similarity would have velocity and stress distributions of the self- 
preserving form (5.1). The condition for this kind of flow is that advection terms 
should be negligible in the energy equation. 

Considered as a whole, but independently of its outer flow, an equilibrium layer 
with the linear stress distribution (4.1) is self-preserving with length scale To/a 

and velocity sale TO), and the whole of the flow may be self-preserving if these 
same scales are suitable for self-preserving development of the outer flow. This 
requirement is very restrictive in boundary-layer flow unless either T~ or a is 
negligibly small. If these conditions can be srttisfied, exactly or approximately, 
the course of development may be obtained from the equation of mean motion 
in terms of the velocity distribution function. This function has the form given 
by the similarity arguments in the equilibrium layer and a good approximation 
to it in the outer flow may be obtained by assuming 

(i) that the Reynolds stress is related to velocity gradient by a coefficient 
of eddy viscosity depending on z alone, i.e. 

- au 
-uv = vT3F7 

(ii) that its magnitude is determined by the condition 

where R, is a constant characteristic of the kind of flow (boundary layer, channel, 

* Exactly true only if U,- U 4 U,. 
pipe, etc.1, 
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(iii) that the velocity distribution in the outer layer joins smoothly the 
velocity distribution in the inner layer. Qauser (1956) and Townsend (1956a,b, 
1960) describe some experimental measurements thak conlirm these assumptions. 

6. Boundary layers in adverse pressure gradients 

for a boundary layer is 
To the usual boundary-layer approximation, the equation of mean motion 

(6.1) U-+V-+-=U,-, au au auv a Ul ’ 

ax ay ay ax 
where U, is the velocity in the free stream and two-dimensional mean flow is 
assumed. Substitution of the self-preserving forms for the distribution of mean 
velocity and Reynolds stress (5.1) gives 

which is an ordinary differential equation with independent variable 7 = y/Z, 
if the coefficients are in constant ratio. It follows that dZ,/dx = constant, 
uo/Ul = constant, (Zo/uo) (du,/dz) = constant, but the scales so defined must be 
compatible with the scales of the equilibrium layer, u, = 7i, I ,  = 7,/a, which is 
only possible either 

(a) if U, cc (x0-z)-l a 78, I, cc (zo-x) (Townsend 1956a), 
or ( b )  if 7, = 0, U, cc (z- ~ , ) - @ ~ 3 ,  I ,  a (2- 5,) (Stratford 1959a,b; Townsend 

The first is an accelerating flow in a converging wedge and the second a zero- 
stress flow in an adverse pressure gradient. 

The converging flow may be regarded as the prototype of a family of approxi- 
mately self-preserving layers which share two of its characteristics, an equi- 
librium layer of nearly constant stress and an outer layer with small velocity 
defects [(U, - U) < U,] at high Reynolds numbers. If the distribution of velocity 
in the equilibrium layer is given by the logarithmic equation (4.3), the velocity 
defect always becomes small at sufficiently large Reynolds numbers and self- 
preserving flow in the pressure distribution defined by U, ot (z - x0)O is possible 
if a > - i(x > x,). For values of a close to - 8 the wall stress is very small and 
the pressure gradient large so that a large variation of stress in the equilibrium 
layer is inevitable (Dunn 1956). 

Flows in these strong adverse pressure gradients must resemble more closely 
the zero-stress self-preserving flow, and we now consider nearly self-preserving 
flows with equilibrium layers whose stress distribution is nearly linear with a 
characteristic length ~ , / a  small compared with the thickness and a velocity 
distribution given by equation (4.5). The distribution of free stream velocity is 
aasumed to be U, a ( x  - xO)O and, as in the zero-stress layer, the scales of velocity 
and length are the free stream velocity U, and (5 - 5,). Substituting these scales 
in equation (6.2) yields 

1960). 

2af- (a+ 1) 7nf’-af2+ (a+ 1)f’ (6.3) 
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which has a self-preserving solution if the inner boundary condition can be 
expressed in a form independent of z. Within the equilibrium layer and not too 
close to the wall, the velocity distribution function is 

where 

and the flowis self-preservingif Sand a(z - zo)/U:are constant. Itwill beseenthat 
this can not be exactly true but the variation of fs is very slow and it is reamnable 
to suppose that the flow adjusts itself to the local value of fs and resembles the 
hypothetical self-preserving flow of constant 5 over moderate ranges of z. 

The wall streas is related to the velocity distribution and the pressure gradient 
by the equation for the momentum integral, 

or in terms of the functionf(T), 

where 

This relation is consistent with the aaaumption of self-preserving flow if the 
variation of T ~ / U ~  is small compared with -.Ia. 

The velocity distribution function is now obtained using the eddy-viscosity 
amumptions of the last section. Making use of equatiom (6.2) and (6.3), the 
distribution function in the outer layer satisfies 

kf - (a + 1) 7f' - af2 + (a+ 1)f' fdq + Iaf"/R, = 0, (6.8) 

a form of the Falkner-Skan equation. For flows in strong adverse pressure 
gradients, the wall stress is small compared with the pressure force on the layer, 
i.e. 7o/u: < -uIa, and may be neglected except in so far aa it determines [. 
An approximate solution of (6.8) satisfying the boundary conditions 

lo 

f(0) = C,  f'(0) = 0, f"(0) = R,Ca(2-C)/Ia 

is f(7) = c exp ( - *RV2), (6.9) 
where IaR2 = -aR8(2-C). (6.10) 

For a smooth junction with the velocity distribution in the equilibrium layer 

at 7 = 71, 1 - Cexp (- 4RV;) = g +  2K;l(a07J*, 

CR2Tl exp ( - *Rev;) = G-l(a0/71)*, (6.11) 

where a. = -a( 1 - 5") very nearly (see Appendix). Approximately, if RV; is 
not too large, I, = (&r)4 CR-l+ 2ao/3Ki Re, 

(6.12) 
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The solutions of these equations are conveniently presented by plotting the 
friction coefficient 7,,/p as a function of 5 for various values of the exponent a 
(from equations (6.7), (6.10), (6.11) and (6.12)) and as a function of cfor various 
values of - 3aR, (substituting values of 5 obtained from equations (6.10), (6.11) 
and (6.12) in equation (6.5)). "his has been done to slide-rule accuracy in figure 2, 
in which possible self-preserving flows are represented by intersections of the two 
families of curves, e.g. in the pressure gradient defined by a = - 0-24, the friction 
coefficient is nearly 7,,/U: = 9.6 x at a Reynolds number of lo8. The two 
bounding curves indicate the limits of validity of the approximations used, the 
left-hand curve imposing the condition that the constant-stress part of the 
equilibrium layer is fully turbulent and the right-hand one that the wall friction 
plays a small part in the momentum balance.* 

1.6 

1 

5 
X "" 
b 
c" 
. 

C 

Fmmm 2. Boundary-layer development with a 'linear-atreas' equilibrium layer. The 
numbers on the 'upper' family of curves refer to values of the exponent a, and on the 
lower f d y  to values of - 3aR, which is not much different from R,. 

The most interesting feature of these solutions is that two different layers 
are possible, one with comparatively large wall stress and small velocity defect 
and another with low stress and large defect, but this is only consistent with the 
known existence of a zero-stress layer for a r -0.23 (Stratford 1969b) and of 
finite-stress layers for this and more negative exponents (Clauser 1956). In 
figure 3, the friction coefficient is shown as a function of Reynolds number for 

* Conditions for internal consktency of the 'linear-streas' approximation are derived 
in the Appendix. It turne out that they are satisfied if r,,/U: 4 - %Ia. 
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flows of constant exponent and it is seen that, although flow at infinite Reynolda 
number is possible with exponents as negative aa -*, the limiting value at 
ordinary Reynolds numbers is very much less, changing from -0.25 near 
R, = 3 x 106 to - 0.28 near R, = 10". It is interesting to compare this variation 
of the friction coefficient with the dependence in a flow constrained by a con- 
tinuous, slight adjustment of the pressure gradient to obey the defect law 

U = U. - $ F(y/6)  (6.13) 

I I I \ I  I I I I I 1 
- \ - 

- 0.23 \ 
- 

X 

I 1 I I I 1 1 

6 5 8 9 10 
0 

log,, ( - %R,) 

FIGURE 3. Variation of wall strese with Reynolds number for a boundary layer with a 
constant exponent. (The short broken lines repreaent meesuremente by Cl8Wer in preseure 
distributions I and 11.) 

in the outer flow (figure 4). If development takes place along the upper branch 
of the friction curve, the necessary adjustment is small and development with 
constant exponent might be indistinguishable experimentally from development 
with constant velocity-defect ratio, but along the lower branch this is not true. 
On this branch, the defect constant C approaches a constant value as the 
Reynolds number increases and the wall stress tends to zero comparatively 
rapidly. 

Some comparisons of these theoretical predictions with the measurements of 
Clauser (1954, 1956) are given in table 1. If it  is remembered that uncertainty 
in the position of the flow origin leads to considerable uncertainty in the appro- 
priate values of R, and a, the agreement is quite satisfactory. Lines showing the 
observed variation of friction with Reynolds number have been drawn on figure 3 
and it is clear that flow I is developing along the upper branch. Flow I1 is in a 
region of ambiguous development and its observed development is not described 
by this theory. However, Clauser adjusted the pressure gradient so that the outer 
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flow obeyed the defect law (6.13) which, in this region, requires an 'unnatural' 
course of development, and it is not surprising that the maintenance of this 
development was difficult and that, unlike most self-preserving flows, small 
deviations tended to grow rather than to disappear. Some remarks of Stratford 
(1969 b) suggest that flow on the lower branch is stable in this sense and so this 

h ? , o  ( - &&) 

FIGURE 4. Variation of wall strew with Reynolds number for constant velocity-defect 
ratio, U,C/7!, in the outer layer. "he numbers near the curves are the correspondingvalues 
of the ratio. (N.B. The measured defect ratio for distribution I is 12, for distribution 
11, 24.) 

9 . 6 ~  lo4 -0.24 0.374 
-0.246 0.374 I 9 . 6 ~  lo-' 2 6 . 7 ~  0.39 ( 8.6 

I1 6.0 7 10.6 0.63 ( ::; -0*266 0.491 
-0.268 0.491 

N.B. The theoretical values refer to two vduea of Reynolds number, 0.76 and 1.6 x lV ,  
md the ObSeNed values Of - &Ia. 

TABLE 1 

explanation of this phenomenon of downstream instability has the virtue that 
self-preserving development remains a stable asymptotic state for turbulent 
flow. 

The calculations t h t  we presented in the diagrams have crssumed that 
K = 0-41, KO = 0-50, B = 0.2, R, = 75, values which have been found to describe 
flow in a zero-stress layer (Townsend 1960). The value of R, also agrees closely 
with the value necessary to describe boundary-layer development in zero pres- 
sure gradient by the procedure of Q 5. 
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7. Self-preserving flow between diverging planes 
The Fbynolds number of two-dimensional mean flow between converging or 

diverging plane boundaries, based on local velocity and channel width, has the 
same value everywhere and so it is possible that the motion is dynamically similar 
at all sections of the flow and that the flow is self-preserving. We consider flow 
in a wedge of semi-angle 0, with the Oz axis the apex of the wedge and the Zoz 
plane the central plane of symmetry. To the boundary-layer approximation, 
applicable if the angle B is small, the equation of mean motion may be written 

- f 2 + g '  = -B+vM- l f" ,  ( 7 4  

self-preserving flow being implied by the use of the distribution functions, f and 
g and the pressure recovery coefficient, 9, defined by 

It is convenient to define iK so thatf(0) = 1, i.e. M / x  = U,, the mean velocity in 
the central plane at distance x from the apex. The Reynolds number of the flow is 

R, = Ulxlv = M / v .  

Integrating equation (7.1) from the centre line to the wall, 

where 70 is the shear stress on the walls of the diffuser. 
For suEciently large Reynolds numbers, the converging flow takes the form 

of two boundary layers separated by a central region of negligible Reynold8 
stress,* but a diverging flow must be turbulent over the whole width of the 
channel. We now apply to the diverging flow the same procedure that has been 
used in $ 6  to obtain the mean-flow properties of self-preserving boundary layers. 
Outside tbe equilibrium layers, the mean velocity distribution is found by 
assuming a constant coefficient of eddy viscosity, given by 

where R, is a constant characteristic of fully developed flow between plane 
boundaries. Measurements by b u f e r  (1951) of pressure flow between parallel 
planes indicate that R, = 28 f 3. Within the central flow then, we have 

f a +  (I,/R,)f" = 9, (7.5) 

and the solution of this equation for the boundary conditions f(0) = 1, f '(0) = 0 
is 

* In a rapidly accelerating flow, the only atrong 80urcea of vorticity are the walla and 
so boundary layers develop. 
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where fl ,  

The integrd in (7.6) is tabulated aa the elliptic integral of the first kind, 

are the roots of x2 - 32 + 3( 1 - 9) = 0, and 

k = Bl/A (A < P a )  and xz  = 1 -f(7). 

at s," [( 1 - t 2 )  ( 1  - k2t2)]i 

sn [F(x)] = 5. 

F(x) = 

and its inverse function, an, is defined by 

The velocity distribution function is 

and a good approximation to the flow integd I, is 

where F,  I are the elliptic integrals of the first and second kinds evaluated at 
X(S)/Pl and 

Using the relations between pl, S and k implied by the definition of B1, i.e. 

(7.9) 
18 

l + k z  
RaIa = -(F-E)' it follows that 

and the wall stress is given by 

(7.10) 
18 ka 

(F - E) an u1 cn u1 dn ul. _ -  70 - ---f'(e) Ia = - u: Rs R, 

Both these relations depend on the approximation that the difference between 
the true value of the flow integral, I,, and the value found by msuming the 
central velocity distribution (7.7) to extend all the way to the wall is negligible. 
These equations relate B and T~ if 8 and R, are known, and their values are found 
by imposing conditions for a smooth junction of the central velocity distribution 
with the velocity distribution in the equilibrium layer. 

For a linear variation of stress in the equilibrium layer, 7 = ~ ~ + a y  where 
ay  $= T~ for most of the layer, and 

f (7)  = (5+2K,-'~(@-C2) (0-7114, (7.11) 

since the stress gradient in the layer is nearly ( 9 - p )  U:x-' (see Appendix). 
The conditions for a smooth junction are that 

(7.12) 
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The assumption of linear stress implies that snul = 1 and that 

(9 - C2) (0- 71) % 7o/u!, 
so, eliminating 0 - we have 

(7.13) 

essentially a relation between and 9. Now 6 is related to the wall stress by 

) + A - 2( 1 - B)]  , u: 9 - 5 2  

and the condition snul = 1 can be expressed as 

R,0 = 6 K ( K - E ) ,  

(7.14) 

(7.16) 

so that the wall stress can be calculated as a function of flow Reynolds number 
and angle of divergence. The results of these calculations are shown in figure 6 
with an indication of the limit of validity of the approximation that 7, < ay,. 
Validity of the approximation that the stress distribution is substantially linear 
can be expressed by the condition 

ioesge 1 

(see (A. 20) in the Appendix). 10045 is about 0.30 for 0 = 0.05, and so the results 
of this treatment are only applicable for larger values of 0. 

A special case of some interest is the flow with zero wall stress and with 6 = 0, 
which occurs at a critical angle of divergence 0,. This angle depends on the values 
of K O  and RE, but the pressure recovery and REO, are functions of K,R$ and 
a few values are tabulated in table 2. 

Assuming K O  = 0.50, R, = 28, we fhd 0, = 0.075rad. = 4.3deg., B = 0.53. 
Milliat (1957) has reported steady diffuser flow for a semi-angle of three degrees 
which is not much less than this calculated value. It should be emphasized that 
secondary flow is very likely to occur in these flows and will cause separation of 
flow from the walls at smaller angles of divergence than the critical value for 
truly two-dimensional flow. An interesting point about the critical flow is that 
the pressure-recovery coefficient is less than for flows in wedges of smaller angle. 

If the stress in the equilibrium layer is nearly constant, 

(7.16) 

and the conditions for a smooth junction are 

70 bog g R z ( e -  T1)) + A  - 1 = 1 -B:snzu,’ 
(7.17) t 1 t 

KUl 
R, 70 and __- =-- 

or, eliminating 0 - q1, 
KU,B-r], I, U i ’  

(7.18) 
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FIQURE 5. Self-preserving flow in a wedge with a ‘linear-stress’ equilibrium layer. 
(a) Variation of wall stress with Fbynolds number for various angles of divergence. (The 
broken portions of the curves are outeide the range of validity of the linear-streaa approxi- 
mation.) (b)  Variation of pressure-recovery coefficient with angle of divergence. (The 
dashed curve shows, for comparison, the variation for OR, = 3 x lo4 if the equilibrium 
layer is of nearly constant strem.) 

KoRt 9 00 R, 
1-64 0.718 0.936 
2.12 0.614 1.492 
2-83 0.620 2.21 
4-26 0.441 3-11 

TABLE 2 

8 Fluid Mech. 11 
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This equation and equations (7.9) and (7.10) determine 7,, /q and 9' as functione 
of R, for a given 8, and the results of solving these equations are shown graphically 
in figure 6. The approximation of constant strew is valid if the corresponding 
velocity distribution could be maintained with a small variation of stress in the 
equilibrium layer and the condition for this, derived in the Appendix, is 

r 0 / q  > 0.2@. 

X 

5" . 
k? 

4 5 6 7 8 
0 

h 3 1 0  R* 
FIQURE 6. Self-preserving flow in a wedge with a 'constant-stress' equilibrium layer. 
(The broken portions of the curves ere outeide the range of validity of the constant-strees 
approximation.) 

It follows that the constant-streas approximation will fail at very high Reynolds 
numbers however small the angle of divergence, and that the increase in pressure- 
recovery coefficient with Reynolds number has a limit. 
Ruetenik (1964, EM also Ruetenik & Corrsin 1955) and Craya & Milliat (1955) 

have made studies of the self-preserving turbulent flow in a wedge of semi-angle 
one degree, each at a Reynolds number of nearly 1-8 x lo6. Reference to figure 6 
shows that these conditions are within the range of validity of the constant-stress 
approximation, and that the theorypredicts a friction coefficient ro/U: = 16x lo4, 
and a pressure coefficient 9 = 0.67. The two sets of meaaurements are in good 
general agreement but Ruetenik gives rather more detail. He hds that 
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ro/Uf = 13 & 1.3 x lo4, and 9 = 0.57 and his measured distributions of mean 
velocity and of Reynolds stress are compared with the theoretical distributions 
in figure 7. Excepting the large difference between the observed and predicted 
values of 9, general agreement is found and the discrepancies can be attributed 
to uncertainty in the value of the flow constant R,. A considerable part of the error 

1 I I I 
10 

710 
FIQURE 7. Comparison of theoretical predictions with meesurementa by Ruetenik (1964) 
of velocity and atrean diatributione in a diverging wedge of semi-angle one degree. (Experi- 
mental resulta 0. theory -.) 

in 9 is due to assuming that integrals over the whole flow can be approximated 
by replacing the composite velocity distribution by the velocity distribution 
for the central flow extrapolated to the walls. This procedure underestimates 

I, and overestimates the integral f 8 ( ~ )  &T by about 10%. Since 

the overestimate is reflected in the value of 9. The necessary modification of 
the equations is straightforward but their solution becomes even more tiresome. 

8-2 
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8. Discussion 
The essential property of an equilibrium layer is local and absolute equi- 

librium between energy supply and dissipation, and definition by this property 
rather than by stress equilibrium extends considerably the applicability of 
similarity arguments. If we are interested only the mean-velocity distribution 
inside the equilibrium layer, the only gain over simple acceptance of the momen- 
tum-transfer theory is a plausible explanation of the difference between the 
Kkm&n constant and the corresponding constant for zero-stress flow, but the 
requirement of energy equilibrium sets clear limits to the extent of the layer 
which are not provided by the mixing-length theory. It is interesting that the 
energy equilibrium is of the same kind as that assumed in the theory of local 
similarity, the difference being that one is localized in physical space and the 
other in wave-number space. Unlike the motion described by the theory of local 
similarity, the motion in an equilibrium layer has an influence on all parts of 
the flow, and the second half of this paper is an attempt to develop a method for 
solving the mean-flow problem in wall flows with different kinds of equilibrium 
layers. The origin of the method is an observation of Clauser (1956) that the 
velocity distribution in the outer part of self-preserving boundary layers is 
nearly that produced by an eddy viscosity of constant ratio to the integrated 
velocity defect at the particular section. Although the final results are not very 
sensitive to this assumption, comparison with experiment suggests that the 
eddy-viscosity hypothesis gives a good description of the mean-velocity dis- 
tribution and that the constant ratio may depend only on the conformation of 
the bounding surfaces and not on the pressure gradient. 

The hypothesis that the turbulent motion in an equilibrium layer is in a uni- 
versal state determined by the stress distribution is not confirmed by numerous 
observations that turbulent intensities in constant-stress layers vary consider- 
ably between different flows of the same stress. This is in strong contrast with the 
universality of the distributions of mean velocity and it is difficult to reconcile 
these observations without supposing that the motion at any point consists of 
two components, an active component responsible for turbulent transfer and 
determined by the stress distribution and an inactive component which does not 
transfer momentum or interact with the universal component. This does not 
mean that the eddy structures contributing to the inactive component at a 
particular point can not form part of the active component at points further 
from the wall, and it seems likely that the inactive motion is a meandering or 
swirling motion made up from attached eddies of large size which contribute to 
the Reynolds stress much further from the wall than the point of observation. 
If this is true, the ratio of turbulent intensity to Reynolds stress would in- 
crease with total thickness of the constant-stress layer, and comparison of the 
ratios in the very thick boundary hyer on the earth’s surface and in laboratory 
boundary layers confirms this. 
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1030. 

Appendix: stress distributions in equilibrium layers 
The procedure descrik,ed in $ 5  gives good results only if the simplified dis- 

tribution of stress in the equilibrium layer, aasumed for mathematical con- 
venience, bears some resemblance to the real distribution. Close resemblance 
requires that the stress distribution computed from the assumed velocity dis- 
tribution and the inferred rate of development of the layer should be nearly 
the same as the assumed stress distribution. If the stress variation in the equi- 
librium layer is mumed to be small, the velpity distribution is given by the 
logarithmic profile, and it is easy to show that the distribution of stress must be 

within the equilibrium layer. The original assumption of constant stress is only 
valid if T - T~ 60 computed is small compared with T,,. 

If a self-preserving boundary layer has an equilibrium layer of nearly constant 
stress, the velocity defect outside the equilibrium layer is small at sufficiently 
large Reynolds numbers, and wall stress and Reynolds number are related by 

R, = (1 + 3a) K-311y-2 exp (y-l - A ) ,  (A. 2) 

where 
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and 7 t Y  7 = exp (A -7-1). 

Assuming a constant eddy viscosity in the outer layer, the velocity distribution 
function is 

f(7) = K( u1- u)/7of = CHhn(R~), (A. 3) 

where 

and the function Hh, is defined by 

(JefFreys & JefFreys 1950, p. 622). In  the constant-stress equilibrium layer, 
f(7) = -log 7 and the integral I, is nearly 

(A. 6) 

where ql specifies the junction of the two layers. The conditions for a smooth 
junction are approximately 

I1 = CR-’Hh,+l(O) + 71, 

l-CHh,(O) = lOg71, CRHh,-i(O) = 7i1, (A- 6) 

ntC2 +n-424n(4n-+)!. (A.7) 
aothat IICR=K@(--) l + a  * C =  

1+3a 24,+’(4n + 3) ! 
The three equations (A. 6), (A. 6) and (A. 7) determine C, R and I, aa functions 
of the exponent a. From the friotion equation (A. 2), we have 

= K2y~&[l+O(y)] due 
ax 

and, to the approximation that y -g 1, 

7 - 7 0  -=- 2a %(lOg71-1) 
70 k+l 11 

Using the values of 7, and Il given by equations (A. 6) and (A. 7), we find 

7 - 7 0  -- - 2a 1 (in-i)! - 
70 [ 2 ( 1 + a ) ( l + k ) ] ~ K R ~  ( in ) !  ’ 

(A. 10) 

omitting the small second term on the right of (A. 7). This shows that the stress 
variation in the equilibrium layer must become very large as a approaches the 
critical value of - 4, whatever the Reynolds number. For a = - 0 2 ,  the ratio is 
nearly 0.4, and so the assumption of constant stress in the equilibrium layer must 
fad for more negative values of a. 

A similar dculation of the stress variation in the equilibrium layer of self- 
preserving wedge flow leads to 

(A. 11) 

and substitution of values of I,, 70, 8, ~9, and u, would show whether the constant- 
stress approximation is permissible in any particular flow. The condition for 
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this may be expressed more compactly and with sufficient accuracy by observing 

(equations (7.9) and (7.10)) and that B-(1-flsn2u,)~= 0.26, l + k % =  1-26, 
Pa = 1.5 very roughly for all the points mlculabd in figure 4. Substituting these 
approximate values and allowing a 60 yo variation of stress in the equilibrium 
layer, the condition for an equilibrium layer of nearly constant stress is that 

ra/U? > 0.26*. (A. 12) 

The contrasting approximation is that the stress variation is linear, i.e. 
7 = r o + a y  with a y  B r,, for most of the equilibrium layer, when the velocity 
distribution is (equation (4.6)) 

U = q+ 2Kc1(ay)4, (A. 13) 

where . 

The stress distribution necessary to maintain this velocity distribution is 

7 - T o =  rz+qg)'lJ+-- 2 d ( a q )  y + - - - - - a ,  3Kg 2 da dx (A. 14) 
3Kaa4 

and the linear stress distribution is a good approximation to this distribution if 

dPl a q  
ax 'Z a = - - + U  (A. 16) 

and if the laat two terms on the right-hand side are small compared with the firet. 
In a boundary layer, dPl/dx = - UldU,/dx, and 5 = q/Ul varies much more 
slowly than U,, so the conditions for smallness become 

__-- 1-3a (%)*qi and - (1 -2a) -< l1 .  2 Y1 (A.16) 
3K0(-a)+  ( z - P ) ~  3Kg X 

Substituting in the first condition the value of ql = y l / x  implied by equations 
(6.10), (6.11) and (6.12), we obtain the condition for development with an equi- 
librium layer of nearly linear stress distribution 

(A. 17) 

This condition is satisfied if the exponent defining the pressure gradient is 
more negative than the value for zero-stress development, a = -0.23. The 
second condition of (A. 16) imposes no additional restriction. A last requirement 
is that ayl  % ro, necessary for validity of the velocity distribution (A. 13). Using 
the approximate forms of equations (&lo), (6.11) and (6.12), 

CR = -a(&/n)iR8(2-C), 5 =  1-C, 
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we find that the requirement is satisfied if 

(A. 18) 

In self-preserving wedge flow, the conditions for smallness of the last two term 
in (A. 14) become 

(A. 19) 

Substituting the value of (a - ql) given by the conditions for a smooth junction 
(7.12), we obtain 

( A ) * < ’ ,  
3x0 (9- p)* R,K, 

and, using the typical values of the slowly varying quantities 9 - 5 9  (1+k9) 
and P previously listed, we find that the condition is 

l O e q <  1. (A. 20) 
The condition that ay, 4 r0 may be obtained in a similar way aa 

or, using the typical values, 
0.2685 To/v. (A. 21) 


